Dra. Erika N. Guerrero PUBLICACIONES

 Hum Mol Genet. 2019;28(5):2459-2476. doi: 10.1093/hmg/ddz062

Amyotrophic lateral sclerosis-associated TDP-43 mutation Q331K prevents nuclear translocation of XRCC4-DNA ligase 4 complex and is linked to genome

damage-mediated neuronal apoptosis

Guerrero EN, Mitra J, Wang H, Rangaswamy S, Hegde PM, Basu P, Rao KS, Hegde ML.

 

Abstract:

Dominant mutations in the RNA/DNA-binding protein TDP-43 have been linked to amyotrophic lateral sclerosis (ALS). Here, we screened genomic DNA extracted from spinal cord specimens of sporadic ALS patients for mutations in the TARDBP gene and identified a patient specimen with previously reported Q331K mutation. The patient spinal cord tissue with Q331K mutation showed accumulation of higher levels of DNA strand breaks and the DNA double-strand break (DSB) marker γH2AX, compared to age-matched controls, suggesting a role of the Q331K mutation in genome-damage accumulation. Using conditional SH-SY5Y lines ectopically expressing wild-type (WT) or Q331K-mutant TDP-43, we confirmed the increased cytosolic sequestration of the poly-ubiquitinated and aggregated form of mutant TDP-43, which correlated with increased genomic DNA strand breaks, activation of the DNA damage response factors phospho-ataxia-telangiectasia mutated (ATM), phospho-53BP1, γH2AX and neuronal apoptosis. We recently reported the involvement of WT TDP-43 in non-homologous end joining (NHEJ)-mediated DSB repair, where it acts as a scaffold for the recruitment of XRCC4-DNA ligase 4 complex. Here, the mutant TDP-43, due to its reduced interaction and enhanced cytosolic mislocalization, prevented the nuclear translocation of XRCC4-DNA ligase 4. Consistently, the mutant cells showed significantly reduced DNA strand break sealing activity and were sensitized to DNA-damaging drugs. In addition, the mutant cells showed elevated levels of reactive oxygen species, suggesting both dominant negative and loss-of-function effects of the mutation. Together, our study uncovered an association of sporadic Q331K mutation with persistent genome damage accumulation due to both damage induction and repair defects.

 

 

Molecular Brain volume 12, Article number: 103 (2019)

RT2 PCR array screening reveals distinct perturbations in DNA damage response signaling in FUS-associated motor neuron disease.

Haibo Wang, Suganya Rangaswamy, Manohar Kodavati, Joy Mitra, Wenting Guo, Erika N. Guerrero, Ludo Van Den Bosch, Muralidhar L. Hegde.

 

Abstract:

Amyotrophic lateral sclerosis (ALS) is a degenerative motor neuron disease that has been linked to defective DNA repair. Many familial ALS patients harbor autosomal dominant mutations in the gene encoding the RNA/DNA binding protein ‘fused in sarcoma’ (FUS) commonly inducing its cytoplasmic mislocalization. Recent reports from our group and others demonstrate a role of FUS in maintaining genome integrity and the DNA damage response (DDR). FUS interacts with many DDR proteins and may regulate their recruitment at damage sites. Given the role of FUS in RNA transactions, here we explore whether FUS also regulates the expression of DDR factors. We performed RT2 PCR arrays for DNA repair and DDR signaling pathways in CRISPR/Cas9 FUS knockout (KO) and shRNA mediated FUS knockdown (KD) cells, which revealed significant (> 2-fold) downregulation of BRCA1, DNA ligase 4, MSH complex and RAD23B. Importantly, similar perturbations in these factors were also consistent in motor neurons differentiated from an ALS patient-derived induced pluripotent stem cell (iPSC) line with a FUS-P525L mutation, as well as in postmortem spinal cord tissue of sporadic ALS patients with FUS pathology. BRCA1 depletion has been linked to neuronal DNA double-strand breaks (DSBs) accumulation and cognitive defects. The ubiquitin receptor RAD23 functions both in nucleotide excision repair and proteasomal protein clearance pathway and is thus linked to neurodegeneration. Together, our study suggests that the FUS pathology perturbs DDR signaling via both its direct role and the effect on the expression of DDR genes. This underscors an intricate connections between FUS, genome instability, and neurodegeneration.

 

 

SUSCRÍBETE

Enviando formulario...

El servidor ha detectado un error.

Formulario recibido.

SUSCRÍBETE

Enviando formulario...

El servidor ha detectado un error.

Formulario recibido.

Tel: (507) 5170700 - Fax: (507) 5070020 - EFax: (507) 5170701 | INDICASAT - AIP | Edificio 219, Ciudad del Saber | Clayton, Apartado 0843-01103 | Panamá 5  Panamá, Rep. de Panamá.

 

© Copyright 2014. INDICASAT AIP. Todos los derechos reservados.

INDICASAT.org.pa

Quienes somos

ISSN 2222-7873

Síguenos